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Abstract

We report results from a lab-in-the-field experiment in India in which we test the viability of two kinds

of monetary payment rules used to incentivize truth-telling: a novel payment rule that relies on ex-

post verification of reports and peer prediction methods (See Prelec, 2004 and Witkowski and Parkes,

2012), which rely only on contemporaneous peer reports. In the experiment, farmers were asked to

give reports about their neighbors and were told that these reports would be used to determine cash

prizes. We varied whether farmers received incentives for the accuracy of their reports (via the two

payment rules) or not. We find that, in the absence of monetary incentives, respondents lie in favor

of their family and friends. However, monetary incentives for accuracy improve the quality of reports

and both payment rules result in reports of comparable accuracy. This is a reassuring outcome

since peer prediction is much easier to implement (though mechanically complex). Importantly, by

imposing structure on our data we also find evidence that one peer predictive payment rule, the

Robust Bayesian Truth Serum of Witkowski and Parkes (2012), is empirically incentive compatible;

respondents maximize their subjective expected utility by reporting truthful answers. Given the

broad applicability and the ease of implementation of RBTS, we hope that this experiment will serve

as a catalyst to verify its usefulness in other contexts.

∗We would like to first thank our team for their tireless work on this project, especially our research manager Sitaram
Mukherjee, our project assistant Prasenjit Samanta, and our field manager Sayan Bhattacharjee. We are also very grateful
to Rohan Parakh for excellent advice, research assistance, and field management. This research was possible with funding
from the Asian Development Bank, PEDL, and Schultz Fund at MIT. We received valuable feedback about this project
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1 Introduction

It has long been understood that asymmetric information poses a major obstacle to providing services

and support to the poor. Principals, such as microfinance institutions (MFIs) or governments, may hope

to allocate credit and capital grants to growing or reliable entrepreneurs, to tailor insurance to the risks

recipients face, or to target subsidies and welfare programs to marginalized populations. Yet, discerning

who does and does not belong in the recipient subgroup is notoriously difficult. Many standard features of

microcredit contracts, such as mandatory savings with the MFI, joint liability, and immediate and frequent

repayment, are blunt tools to reduce default in the face of an inability to screen new borrowers. But,

emerging evidence suggests these tools are not without their costs (see Fischer (2012) and Field, Papp,

Pande, and Rigol (2013) for evidence that these contractual features may inhibit efficient investment).

In high income countries, principals may rely on formal information, such as income statements or

credit bureau reports, to discern between high and low ability entrepreneurs or between high and low

risk borrowers . However, in many low income countries, formal information about the intended targets

of services is sparse or non existent. Thus governments, NGOs, and MFIs screening recipients for aid

and credit often rely on information embedded in the communities they serve. Relatively little is known,

however, about how to reliably and cost-effectively elicit community information. For instance, it is easy

to imagine that community members may lie about their peers if they know that their reports will be

used to determine the allocation of valuable resources. One obvious method of eliciting truthful reports

would be to pay respondents for the accuracy of the information they share. But, such incentive schemes

have been slow to catch on in development economics, a trend that Delevande et. al. (2011) attribute

to the dearth of payment rules that are both robust to risk preferences and easy to implement. In this

paper, we use a field experiment to identify a payment rule that responds to both these needs.

We report experimental evidence from a village in Maharashtra, India that shows that, as a baseline,

community members know things about their peers and that they distort their reports when these reports

have financial consequences. These two results are necessary to evaluate whether our two payment rules

realign incentives for truthfulness: a novel payment rule that is robust to risk aversion and based on

ex-post verification, and a class of payment rules known as peer prediction mechanisms that are more

complex but highly portable (see e.g. Prelec (2004), and Witkowski and Parkes (2012)). We find that

respodnents are responsive to monetary incentives for accuracy. Moreover, comparing our straightforward,

easy to understand payment rule based on ex post verification to peer prediction mechanisms we find

that the peer prediction mechanisms work surprisingly well in aligning incentives for truthfulness, and
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maintaining their attractive theoretical properties. Peer prediction mechanisms rely on reports of first

order beliefs (beliefs about the likelihood of a given outcome) and second order beliefs (beliefs about

the distribution of first order beliefs). We generate the first empirical evidence that respondents with

low numeracy respond as strongly to peer prediction mechanisms as they do to straightforward payment

schemes. Further, we show that one peer prediction mechanism in particular, the Robust Bayesian Truth

Serum, is incentive compatible; a non-trivial finding, given the complexity of the payment scheme and

its reliance on second order beliefs of community members. Peer prediction mechanisms are extremely

easy to implement and appropriate for any setting in which multiple respondents have information about

an outcome of interest, so it is our hope that this paper will serve as a catalyst for others to verify and

extend their usefulness to other contexts.

The techniques we use to provide monetary incentives for respondents’ accuracy are related to the

scoring rule and peer prediction literatures. Scoring rules are a class of mechanisms that elicit subjective

expectations about future events by paying respondents as a function of their report and the future

realization of the event (see e.g. Brier (1950)). We develop a novel scoring rule that is both robust to risk

aversion and easy for respondents with low levels of numerical literacy to understand; it requires only

that respondents rank the likelihood of events. A number of other authors have devised scoring rules that

are robust to risk aversion (see e.g. Karni (2009), Hossain and Okui (2013), and Offerman et. al. (2009)).

And Bhattacharya and Roth (2015) propose an alternative rank order scoring rule for respondents with

low levels of numerical literacy.

While the scoring rule we develop is easy for respondents to understand, it shares the drawback,

common among all scoring rules, that it requires ex-post verification of the outcome of the event in

question. In many cases, the outcome is realized after some non-trivial period of time and may be costly

to verify. Peer prediction mechanisms bypass this hurdle by paying subjects based only on their own

reports and the reports of their peers. However, these mechanisms are extremely complicated– and,

therefore, difficult to explain– so their usefulness, while theoretically guaranteed, is an open empirical

question. The two peer prediction mechanisms evaluated in this paper are the Bayesian Truth Serum of

Prelec (2004), and the Robust Bayesian Truth Serum of Witkowski and Parkes (2012).

The remainder of the paper proceeds as follows. Section 2 describes the setting and our experiment,

Section 3 details the payment rules we evaluated, Section 4 outlines our main specifications, Section 5

describes our results, and Section 6 concludes. Tables and a proof of the incentive properties of our novel
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payment rule are contained in the appendix.

2 Description of the Experiment

We conducted a census of the village of Telengaon in Amravati District of Maharashtra, India. During the

census survey, we asked respondents whether they were engaged in any household enterprise, including

farming and livestock activities. After the completion of the census, the 86 households that reported

having a household business were assigned to groups of five persons, based on geographical proximity.

All five business owners within a group were then invited to a community hall to participate in our study.

An the hall, participants each responded in private to a set of questions about themselves (enumerated

below) for which they would later be ranking their group members. At the time at which they provided

these answers, however, respondents were unaware of the ranking exercise that would follow.

2.1 The Ranking Exercise

After the completion of the private data intake, surveyors presented each respondent with five name

cards for each of the five members of the group. They then explained the concept of ranking by putting

name cards in order of age. Surveyors and respondents first practiced with a few simple exercises such

as ranking group members on houserhold size and height. After surveyors had fully explained rankings,

the respondents then proceeded to play the following game. They were told that they would provide 10

rankings for the peers in their group. The subjects of ranking were:

• Level of education

• Health expenditures over the previous 6 months

• Number of digits recalled in a digitspan memory test

• Household income in the past 30 days

• Total value of all household assets

• Risk aversion measured by a standard risk aversion game

• Average monthly profits over the past year

• Whether the household had trouble making a loan repayment in the previous 2 months
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• Patience measured by a standard patience game

• Marginal return to a Rs.6000 loan1

For every question, the person who had the highest average rank in the group would receive a prize of

Rs.20. For certain, randomly selected, questions, they also had the possibility of earning an additional

personal incentive for the accuracy of their rankings. The incentives were randomly paid according

to one of two payment rules: an ex-post accuracy rule we designed specifically for this study and the

Bayesian Truth Serum (BTS) of Prelec (2004). Both rules are described fully in the following section.

We normalized the payments such that a respondent would earn on average Rs.10, but could earn more

than Rs.30 for a fully accurate ranking. For the ex-post accuracy incentive, the surveyors explained with

several examples exactly how each respondent’s payment would be calculated and showed, via examples

with age and height, that more accurate rankings would receive higher incentive payments. For the BTS

incentive, respondents were told that their payments would depend on their own rankings and on the

rankings given by their peers, but that the rule was too complicated to explain. For both the BTS and

the ex-post accuracy payment rules, respondents were assured, however, that the more accurate their

rankings were, the higher payment sums they would receive.

The first question posed to respondents was always to rank their peers on their level of education.

The question was never incentivized and was only used for the purpose of demonstrating the Rs.20 prize

payments. We randomized the order of the questions and block-randomized (groups of 3 questions) the

order of the incentives: no incentive, BTS incentives, or ex-post accuracy incentives. Each respondent

therefore answered 3 questions with no incentive, 3 questions with the BTS incentive, and 3 questions

with the ex-post accuracy incentive.2 So one group might answer the first 3 questions without incentives,

the second 3 questions with the BTS incentives, and the last 3 questions with the ex-post accuracy

incentive while another group would answer the first 3 questions with the ex-post accuracy incentive, the

next 3 without incentives, and the last 3 with BTS incentives.

In order to avoid coordination, each respondent worked with a surveyor in private to provide his

rankings. Once the rankings for a question were completed for all 5 respondents, they were asked to sit

next to one another with their ranking sheets. At this point, therefore, all group members would be able
1In this question, we elicit the self-reported marginal return to a Rs.6000 loan. In other work conducted by the authors,

we utilize data from “cash drop” experiments cited in the introduction which estimate the true average marginal return of
microentrepreneurs. The authors of these experiments, before distributing the grants, asked respondents to estimate what
they thought their marginal return would be. We find that these self-reported estimates are good predictors of the true
marginal return.

2Due to weather and logistical constraints, sometimes the games would have to end early. So we don’t have the full 9
questions for all respondents.
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to observe each others rankings. We designed the game in this manner to intensify the trade-off that

respondents faced: in the absence of any personal incentives (BTS and ex-post accuracy), the optimal

strategy each respondent should assume was to rank themselves and their close friends and family highly

so as to maximize their chance of winning the Rs. 20 prize. This would be even more salient if their peers

in the group could observe each person’s rankings at the end of each question. On the other hand, if

respondents had a personal incentive, then they would maximize their expected private payoff by telling

the truth.

Group members’ rankings were recorded and incentive and prize payments were disbursed at the end

of each question while respondents were still seated as a group. Therefore respondents also received

immediate feedback on how the accuracy of their rankings was being rewarded.

2.2 Description of the Sample

Our respondents were exclusively male, as the owners of the largest household business in this village

happened to all be men. They had an average 8.6 years of formal education. They had earned nearly

Rs.8000 in income in the previous month from all household income-generating activities and had average

monthly profits of Rs.4300 in the previous year.

3 Description of the Payment Rules

Ex-Post Accuracy Payment Rule

We designed the ex-post accuracy payment rule to be easy to explain to respondents with a low level of

numerical literacy and to provide incentives to be truthful regardless of the respondent’s degree of risk

aversion. Respondents are asked to rank their five peers on the basis of a past or an uncertain future

outcome. The ranking is based on whose outcome is most likely to be highest, second highest etc. A bit

of notation is required for the formal description of the payment rule.

Suppose there are n respondents in a group, and each is tasked with ranking the entire group along

some metric (e.g. entrepreneurial ability). Let {X1, . . . , Xn} be a set of non negative, independent

random variables representing the eventual default status of each member of the group, to be realized

at some point in the future (e.g. business profitability)3. Let Fj(·) and fj(·) be the CDF and PDF of

Xj . Each respondent i submits a permutation σi : {1, . . . , n} → {1, . . . , n} that is one to one and onto,
3Note, these random variables need not be realized in the future. It would be equivalent that they were realized in the

past but that respondents are unaware of their precise realization.
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which represents a ranking of his peers. Then, after each random variable is realized, with realizations

{x1, . . . xn} respondents are paid using the rank order payment rule

n∑
j=1

j × xσi(j)

That is, respondent i is paid n times the outcome corresponding to the random variable he ranked

most highly, n − 1 times the outcome of the random variable he ranked second most highly and so on.

Consider the following assumption.

MLRP Assumption:{X1, · · · , Xn} can be ordered X1 < · · · < Xn where < indicates the monotone

likelihood ratio property. That is, for i < j and a < b we have fi(a)
fi(b) >

fj(a)
fj(b) .

The MLRP assumption is common in contract theoretic applications. If random variables X1 and X2

satisfy the monotone likelihood ratio property, then for any high realization a, the ratio of the likelihood

a is acheived under X1 relative to X2 is higher than the same ratio for some low realization b < a. We

have the following theorem.

Theorem 1: Under the MLRP assumption, the rank order payment rule is truthful for any expected

utility maximizer whose utility is monotone increasing in wealth.

We relegate a proof of this theorem to the appendix. To offer some intuition for how the payment rule

works, Figure 1 below shows an example we utilized to explain the payment rule to respondents during

the experiment. Persons A, B, C, D, and E are all in the same group.4 We ask respondents to rank all

five people from eldest to youngest. In the example below, the group is perfectly ordered according to

their age.

Name Age Rank
A 39 5
B 29 4
C 28 3
D 26 2
E 24 1

Total Points 471

Figure 1: Ex-Post Accuracy Payment Rule

The payment rule works by giving each respondent a monetary payment in proportion to the total

number of points they receive for the exercise. The points are calculated by adding five times the outcome

(the age, in this case) of the person they assigned to the highest spot, four times the outcome of the
4During the pilot, the names and real ages of the members of each group were utilized.
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person assigned to the second highest spot and so on. In Figure 1, the total number of points received

for the ranking is 471. Suppose the respondent mis-ranks person A and person B as shown in Figure 2.

Then her total number of points would be reduced to 441 and her payment would fall proportionately.

Name Age Rank
A 39 1
B 29 4
C 28 3
D 26 2
E 24 5

Total Points 411

Figure 2: Ex-Post Accuracy Payment Rule

Thus it was intuitive to respondents that the truthful rank ordering maximizes their expected payout.

However this payment rule relies on the verification of ex-post information, which can be costly to collect.

More worryingly, if payments rely on self-reported ex-post outcomes, respondents may collude with other

members of their group to misreport ex post outcomes so as to maximize their incentive payments.

Peer Prediction Payment Rules

Peer prediction methods such as the Bayesian Truth Serum of Prelec (2004) and Robust Bayesian Truth

Serum of Witkowski and Parkes (2012) create incentives for respondents to tell the truth without relying

on ex-post verification of outcomes. Both payment rules require elicitation of first order beliefs (the rank-

ing that the respondent assigns to each of his peers) and second order beliefs (the probability distribution

the respondent assigns to each possible ranking his peers may give one another). A formal description of

the payoff rules requires additional notation to describe the environment.

Suppose there is a binary state of the world t ∈ (h, l) (high, low) representing the entrepreneurial

quality of a community member. There are n agents each of whom get a binary signal which is informative

of the state of the world. That is each agent receives a signal s ∈ {h, l} which may represent what they

observe about their peer (e.g. they appear responsible, smart etc). Suppose further that all agents share

a common prior about the state of the world such that they all agree on the prior probability of a high

state, and they all agree on the distribution of signals conditional on the state. Let ph = P (sj = h|si = h)

be the probability an agent assigns to one of his peers receiving a high signal conditional on himself re-

ceiving a high signal, and analogously let pl = P (sj = h|si = l). We make the following assumption.

Assumption (Admissability): We say the common prior is admissable if ph > pl.
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In English this implies that the probability that one’s peer receives a high signal is higher if the agent

himself receives a high signal. Many natural distributions satisfy this weak requirement.

The Bayesian Truth Serum

The BTS is implemented as follows. Every agent states their first order belief (their signal), in a report

xi ∈ {0, 1} (imagine xi = 1 corresponding to si = h). Further they report their second order belief

yi ∈ [0, 1] (this is the fraction of the population they believe will report a high signal, xk = 1 ). Let x̄

denote the average first order belief, and ȳ denote the average second order belief. The BTS payment is

[
(1− xi) log

(
1− x̄
1− ȳ

)
+ xilog

(
x̄

ȳ

)]
+
[
(1− x̄) log

(
1− yi
1− x̄

)
+ x̄log

(y
x̄

)]

The main theorem of Prelec (2004) is as follows:

Theorem (Prelec, 2004): Under the assumption of admissability, for n sufficiently large, and for

risk neutral agents, the Baysian Truth Serum has a Bayes Nash Equilibrium in which all agents report

their first and second order beliefs truthfully.

The intuition behind this payment rule is as follows. The second bracketed term compensates the

respondent for his stated second order beliefs. A respondent’s second order beliefs are evaluated by

comparing them to the stated first order beliefs of all respondents. The closer his second order beliefs

are to the true distribution of first order beliefs, the more he earns. The first term compensates the

agent for his stated first order belief. His first order belief is evaluated by how “surprisingly common” it

is relative to stated second order beliefs of his peers. That is, respondents who state first order beliefs

whose empirical frequencies are higher than predicted by stated second order beliefs are paid more than

respondents who state first order beliefs whose empirical frequencies are lower than predicted.

The Robust Bayesian Truth Serum

In order to define the RBTS we must first define the quadratic scoring rule. Let

Rq(y, ω) =


2y − y2 if ω = 1

1− y2 if ω = 0
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Imagine an agent trying to predict whether some true state ω is 1 or 0. The quadratic scoring rule

has the property that his expected score is maximized by reporting his true belief about the probability

the state ω is 1 (see e.g. Selten, 1998).

The RBTS is implemented as follows. Every agent states their first order belief (their signal), in a

report xi ∈ {0, 1} and their second order belief yi ∈ [0, 1] (the fraction of the population they believe will

report a high signal, xk = 1 ). For each agent i, assign them a peer agent j, and a reference agent k, and

calculate

y′
i =


yj + δ if xi = 1

yj − δ if xi = 0

for arbitrary δ. The RBTS payment for agent i is

Rq (y′
i, xk) +Rq (yi, xk)

The main theorem of Witkowski and Parkes is as follows

Theorem (Witkowski and Parkes, 2012): Under the assumption of an admissable prior and risk

neutral agents, there is a Bayes Nash Equilibrium in which all agents report their first and second order

beliefs truthfully.

The intuition behind the payment rule is fairly straightforward. The payment rule has two compo-

nents. The second component incentivizes the agent to be truthful about his second order beliefs. That

is, the agent is paid via the quadratic scoring rule to predict what some reference agent k will anounce as

his signal. And by the discussion above, agent i maximizes his expected payment from this component of

the scoring rule by truthfully announcing his belief yi about the likelihood agent k will announce a high

signal. In simpler terms, the payment rule rewards agent i for choosing a second order belief as close as

posssible to the truth (the realized distribution of first order beliefs).

The first component of the payment rule incentivizes the agent to be truthful about his first order

beliefs. The term y′
i takes an arbitrary person j’s second order belief yj and either raises or lowers it

depending on i’s report xi. RBTS pays agent i Rq (y′
i, xk), and so i wants y′

i to be as near as possible

to the true distribution of responses in the population. The admissability assumption guarantees that

if person j were to know that person i’s signal were high, then person j would increase his assessment
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as to the number of people in the group who received high signals. Likewise, if j were to learn that i’s

signal were low, j would lower his assessment about the number of people in the group who received high

signals. In effect the mechanism raises or lowers j’s assessment based on i’s report, and then pays i based

on the closeness of this modified report to the truth. Thus i can do no better than to tell the truth.

Implementing Peer Prediction

We used the BTS in the field to incentivize rank order responses about members of each group, and

evaluated both rules using simulations and the data we collected. The model and payment rule, however,

were designed for binary responses. Thus while responses contain a rank ordering of 5 people, we treat

each ranking as a composite response to 25 yes/no questions of the form “Is person i the highest ranking

individual in the group?”, “Is he the second highest?” and so on. We elicited second order beliefs of the

form “How many people will say person i is the highest ranking individual in the group?” “How many will

say he is the second highest?” and so on. From there we directly applied the payment rule, callibrated

so that the expected difference between payments arising from truthful and deceptive answers was large.

Note that the accuracy of responses across various questions in a single ranking were correlated, but under

the assumption of risk neutrality (which is maintained throughout the peer prediction literature and may

be empirically reasonable with respect to moderate sums of money), these correlations are irrelevant.

The peer prediction methods are cheap to implement as they circumvent the need for ex post veri-

fication, but are extremely complicated and thus impossible to describe to the respondents. Therefore

rather than explain the payment rule, we told participants that their payments would be based on their

own rankings and the rankings their group members, but that the exact payment scheme was too difficult

to explain. As with the ex-post verification rule, however, we reassured them that they would maximize

their personal payments by telling us the truth about what they knew.

We address the tradeoff between simplicity of explanation and the lack of necessity for ex-post veri-

fication in the analysis that follows and show that little is lost by using peer prediction rather than the

ex-post accuracy rule. Moreover, we show that the RBTS may actually be incentive compatible according

to the empirically generated data and argue that this is a desirable property for mechanisms used in the

long term even if their precise mechanics may not be understood by participants.
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4 Specification

Before we can evaluate whether and how incentives improve the accuracy of responses, we need to

understand whether the rankings given by group members have predictive power. Our main econometric

specification asks how well a respondent’s rankings of his peer matches with his peer’s rank ordering based

on true outcome realizations. To ground the concept of the true outcome rank ordering, we provide a

simple example in Figure 3. Persons’ A-E self-reported incomes are presented. The true outcome rank is

the ordering of the income values from highest to lowest.

Name Income-True Outcome Value True Outcome Rank
A 5000 5
B 4000 4
C 3000 3
D 2000 2
E 1000 1

Figure 3: True Outcome Values vs. True Outcome Ranks

This specification is of interest as it allow for comparability across questions:

Outcomeikj = α0 + α1Rankikj + α2Questionikj +Xikj + γj + εikj (1)

In the regression above, i indexes the person being ranked, j indexes his group, and k indexes the

person doing the ranking. Depending on the table, Outcomeikj will represent either a measure of either

person i’s outcome value (column 2 of Figure 3) or person i’s rank position in group j (column 3 of

Figure 3). Rankikj is the rank that person k gives person i in group j. The highest rank for a particular

question is 5 and the lowest is 1. If Outcomeikj represents person i’s rank position in group j, then

α1 = 1 if respondents are able to perfectly predict the true outcome value of their peers. Questionikj is

a dummy variable for the question. Xijk is a control for person i’s level of education and γj is a group

fixed effect.5 Standard errors are clustered at the group level.

The primary interest of this study is to evaluate what types of incentives can disuade respondents

from behaving strategically when reporting their rankings when they know that allocative decisions will

be made based on their responses. To estimate whether offering incentives improves the accuracy of

responses, this specification stacks the within-group rank order of outcome values as reported by each

client i in group j across all questions and regresses these true rank-order outcomes on the rank given to

person i by person k.
5We include a group fixed effect in this specification because we had 3 groups with only 4 members.
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Outcomeikj = α0+α1Rankikj∗Incetiveikj+α2Rankikj+α3Incentiveikj+α4Questionikj+Xikj+γj+εikj

(2)

The rank variable, Rankikj is interacted with whether respondent k received an incentive (Incentiveikj)-

pooled across BTS and ex-post accuracy- for the responses given for the question. α1 is our main co-

efficient of interest. If incentives produce more accurate answers, then α1 > 0. The remainder of the

variables are as above and we cluster our standard errors at the group level.

If incentives improve accuracy, we test whether the rankings reported when respondents are given

incentives via BTS or ex-post accuracy differed significantly in their accuracy. To address this we estimate

the following model

Outcomeikj = β0+β1Rankikj∗BTSIncentiveikj+β2Rankikj∗EPIncentiveikj+β3Rankikj+β4BTSIncentiveikj+β5EPIncentiveikj+β6Questionikj+Xikj+γj+εikj

(3)

whereBTSIncentiveijk is a dummy for whether the question was incentivized with BTS and EPIncentiveijk

is a dummy for whether it was incentivized with the ex-post payment rule. The coefficients β1and β2

reveal how each incentive type influences rankings versus no incentives. An F-test of β1-β2 will indicate

whether the accuracy of the ranks is significantly different between these two payment rules.

5 Results

5.1 Do Incentives Improve Accuracy?

In Table 1, we present the results of regression model 1. The outcome variable is the rank order of true

values as reported by the members in the group: for 5-member groups, this is a number between 1 and 5

with 5 being the highest value in the group and 1 being the lowest. In column 1, we present the results

controlling only for the question for which the rank was given while in column 2 we add the education

control. If Rank predicted outcomes perfectly, the coefficient α1 would be 1. We find that, in the no
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controls specification, being ranked 1 higher by a group member k increases the true outcome rank of

group member i by 0.1. Adding the education control improves a precision slightly.

Respondents are able to predict some of the variation in the true outcome order, but the accuracy

of that prediction when pooled across questions and incentives is modest. We therefore break down our

results further to better understand what information respondents have about different domains of their

peers’ economic lives. We present the regressions by each question in Table 2.6 Respondents are best able

to predict income, assets, and marginal returns rank orders. Being ranked 1 higher by a group member,

on average, implies an increase in the true income rank order by 0.3. Although noisy, they also predict

some of the variation in digitspan, profits and health expenditures. When we pool across and incentives

and no incentives, it appears that respondents are not able to predict risk and time preferences, as well

as whether their peers have trouble making loan repayments.

We have shown that respondents have valuable information about their neighbors across important

domains. But can rankings be improved if respondents are provided incentives? In Table 3, we separate

the effects by whether respondents received incentives (pooling across BTS and ex post accuracy payment

rules) as specified in regression model 2. Without incentives, when we pool across all questions, the

rank has no predictive power. The coefficient on the interaction, however, is large and significant in

both columns 1 and 2, implying that monetary incentives have a powerful effect on collecting accurate

reports. As before, we disaggregate the regressions by individual questions in Table 4. First, notice that

respondents are completely unable to predict time (Column 8) and risk preferences (Column 9), with

or without incentives. It is possible that respondents do not have information about how risk averse or

patient their peers are. Alternatively, it is possible that the games we used to measure risk and time

preferences are ineffective at predicting their respective outcomes. Although we do not have a diffinitive

resolution to these questions, we do find (in regressions not shown) that our patience and risk outcomes

are not predictive of other outcome variables with which they should in theory be correlated such as

income, profits, or health risk (Levitt and List 2006).

For self-reported marginal returns, health, loan repayment ability, and digitspan rankings without

incentives are also completely uninformative. But giving respondents an incentive improves accuracy

dramatically. In the case of loan repayment, incentives increase predictiveness by as much as 0.44 over

groups that did not receive incentives for this question. In the case of income, assets, and profits,

respondents are able to predict well even without incentives. One possible explanation for this is that

respondents knew that these were relatively more observable measures for both researchers and others in
6The number of observations vary because not all groups answered all questions due to logistical constraints in the field.
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the group. They may have inferred that purposely misreporting too severely on these questions would

have been too transparent.

While we know that respondents have information about one another along most dimensions tested and

that incentives matter in obtaining accurate rankings, a natural next step is to quantify the information

that respondents have in magnitudes of the outcome variable. This will provide an economic measure

of how much variation between group members ranks can predict. Rather than the true outcome rank

being the left hand side variable, we present regressions where the left hand side variable is in outcome

values in Table 5. With incentives, as can be seen by adding the coefficients on IncomeRank and

IncomeRank ∗ ReceivedIncentive in column 3, the predicted increase in income from being ranked 1

higher by the group is Rs. 1400. When we, on the other hand, regress the true income values on the

rank order if group members had ranked their peers perfectly, as presented in Appendix Table A.2,7 the

coefficient on rank is approximately 3700. This tells us that the true average increase in income from

moving up one rank is Rs.3700. Thus community reports capture a substantial fraction of the total

variation in our sample.

5.2 Do Payments Calculated via Peer Prediction Mechanisms Incentivize

Truth-Telling?

Having documented that respondents have information about one another and that incentives can help

improve the accuracy of the information, we can ask the principal answer of this study: does the payment

rule that we use to provide incentives affect to the quality of responses obtain? Respondents incentive

payments were calculated using either an ex-post accuracy rule, which paid by comparing how a respon-

dent ranked a peer with the information that the peer self-reported prior to the experiment, or via BTS.

The most salient distinction between the two payment rules during the game was in the detail with which

each payment scheme was described. At the point in the game when respondents were to be paid for

questions via the ex-post accuracy rule, surveyors spent a considerable amount of time explaining exactly

how incentives would be calculated. When it was time to give rankings that would be rewarded via

BTS, surveyors simply told respondents that their payments would be based on their own ranks and the

rankings of their peers, but that it was too complicated to explain the payment rule exactly. With both

ex-post accuracy and with BTS, surveyors emphasized to respondents that the way to maximize their

payments was to be as truthful about what they knew as possible.
7We regress the true outcome value on the true outcome rank.
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Did the level of explanation affect the accuracy of the responses? Rather than pooling across BTS

and ex-post accuracy, we examine these two payment rules separately and present the results in Table

6. First, notice that both BTS and ex-post incentives substantially improve the accuracy of rankings.

At the bottom of the table, we provide an F-test of whether BTS and ex-post incentivized significantly

different responses. We find that we cannot reject that the quality of responses induced by each payment

rule is the same, although the point estimate on the difference is large. If anything, BTS appears to lead

to more accurate rankings than ex-post accuracy. Although we have no way of testing this hypothesis

formally, one possible reason BTS may have performed better is that our respondents could have felt

overwhelmed with the mathematical explanations of the ex-post payment rule.8

How does the provision of incentives affect who is highly ranked? In Table 7, we interact whether

the person being ranked is a family member with whether a respondent receives an incentive. In the

absence of incentives, respondents rank family members on average 0.85 ranks higher. The interaction

term, however, suggests that when a respondent receives incentives, the skewing towards family members

is almost completely negated. This is the case even after controlling for how well a respondent knows

a family and a non-family peer in his group, implying that this is unlikely to be the result of group

members knowing their family members better. This result is consistent with the interpretation that in

the absence of personal incentives, respondents simply want to allocate the Rs. 20 prize to persons they

are closest to in the group. When a personal incentive is given, however, they adjust their rankings to

maximize their own payoff.

5.2.1 Verifying the Theoretical Properties of BTS in the Data

Given that BTS is just as effective in eliciting truthful responses as the straightforward payment rule, it is

worthwhile to verify that the payment method works as theoretically predicted. That the peer prediction

mechanism should work as predicted is desirable for several reasons. First, we do not want to deceive

respondents when we tell them they can do no better than to tell the truth. Second, even if respondents do

not know the precise mechanics of the payment rule, if it does not provide strong incentives for truthfulness

respondents may learn over time that deceptive answers result in similar payment distributions.

The first step to verifying that the BTS works as predicted is to verify that, on average, people have

informative second order beliefs. One should not expect second order beliefs to be perfectly informative

about the distribution of first order beliefs, as some respondents are misinformed about the true state
8As described in Section 3, surveyors used ages and heights of group members to calculated hypothetical incentive

payments and to illustrate how the rule paid.
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of the world (for example, how much income group members really earn). But reasonable predictive

power is reassuring that respondents understand the task and have informed second order beliefs. To

ask whether reported second order beliefs have any predictive power over reported first order beliefs we

estimate the following model

FOBnij = α1SOBnijk + α2Questionikj +Xikj + γj + εikj

In the regression above, FOBnij is variable that captures the number of group members in group j

who said that person i is in rank position n. So this outcome captures the distribution of first order

beliefs in the group. And SOBnijk measures the frequency with which respondent k in group j thought

person i would be ranked in spot n. A positive coefficient on α1 indicates that average second order

beliefs are meaningful predictors of first order beliefs within a group.

In Table 8 we find respodents’ beliefs about what others believe predict the empirical distribution of

reported ranks. Column 1 presents the results without controls, and Column 2 presents the results with

controls. We see that respondents do have accurate second order beliefs and that the accuracy of these

beliefs improves with controls. Could this be mechanically true if respondents simply put the most weight

in the second order beliefs on their own first order beliefs? In Appendix Table A.3, we show that this is

not the case. We generate a second order beliefs distribution that puts 100% weight on a respondents

own first order belief and 0 weight on any other second order belief. When we regress the first order

beliefs distribution (FOB) on this new SOB, we see that the second order belief is less predictive than

when the true second order beliefs are analyzed.

We next investigate whether people with accurate second order beliefs have accurate first order beliefs.

Prelec and Seung (2006) note the theoretical connection between these two objects. Those with accurate

second order beliefs have accurate knowledge of the state and thus also have accurate first order beliefs.

The motivation behind this question is that if the answer is in the affirmative in practice, then this

provides a cost-effective method to determine which respondents have accurate information. To answer

it, we first calculated the correlation, at the ranker by rankee by question level, of the second order beliefs

and the true distribution of first order beliefs. A higher correlation indicates that second order beliefs are

more predictive of the observed distribution of rankings. We then regressed the true outcome rank order

on the predicted rank order (the first order belief), the accuracy of second order beliefs (the correlation

between first and second order beliefs), and the interaction of these two variables. The coefficient on the

interaction between the the accuracy of second order beliefs and the rankings given by each respondent
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tells us whether respondents who have more accurate second order beliefs also have more accurate first

order beliefs. In Table 9, we present the results of this regression with and without controls. We find that

respondents with more accurate second order beliefs also have more accurate first order beliefs. Increasing

the correlation between second order beliefs and true rankings by one standard deviation (0.53), improves

the accuracy of rankings by 100%.

5.2.2 Incentive Compatibility

In this section we evaluate the incentive compatibility of the peer prediction payment schemes. While

we calculated payments using BTS in our experiment, we have found that the payments it induces are

extremely noisy. This is because in practice, it was very common for respondents to announce zeroes for

their second order beliefs. That is, respondends would frequently guess that no one would rank people

in certain positions. Because BTS evaluatse the ratio of one’s own answer and community expectations,

responses near zero cause the mechanism to output extremely large positive and negative values that

don’t correspond closely with accuracy. So in what follows, we evaluate the incentive compatability of

the Robust Bayesian Truth Serum, which does not suffer from sensitivity to extreme responses in the

same manner. We are able to do so because the inputs required for the two payment rules are identical.

Throughout the experiment, we told respondents that they would maximize their personal payoffs if

they reported the ranks truthfully. While RBTS is truthful under certain reasonable assumptions about

how beliefs are formed, its incentive compatability under the empirical distribution of beliefs in practice

remains an open question. We therefore test two related, but distinct, questions: first, are larger RBTS

payments associated with more accurate reports? In other words, do respondents get higher payouts

following correct answers than they do following incorrect answers? Note that this is not vacuously

satisfied as respondents are paid only based on the reported first and second order beliefs of their peers,

and not on the ex post accuracy of their responses. Second, are respondents maximizing their subjective

expected utility by telling the truth?9

To answer the first question, we estimate the following stacked regression using the questions for which

group j received the RBTS incentive.

Correctnikj = α1RBTSpaymentnikj +Questionikj +Xikj + γj + εikj

In the regression above, Correctnikj is a dummy for whether person k correctly identified that person
9This is the standard theoretical notion of incentive compatability.
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i either is or is not in position n in the true rank ordering. Thus if person k said that person i was (not)

in spot n and person i was indeed (not) in spot n then Correctnikj is 1. Else it is 0. RBTSpaymentnikj

measures the payment that person k received for his stated first order belief about whether person i

was in spot n. A positive coefficient α1 indicates that respondents can expect to earn more money from

correct answers than incorrect answers. We present these results in Appendix Table A.1 and find that

indeed a higher RBTS payment is associated with correct answers: a person that receives an extra RBTS

point is 7 percentage points more likely to have given a correct ranking.

More truthful answers, however, are not necessarily more accurate. Our second goal is to therefore

test whether more truthful answers are associated with higher payments. Due to the coarsness of our

elicited measures of belief, we cannot verify directly whether or not their priors are admissable. However

we can determine the distribution of payoffs respondents expect to receive under alternative responses

to see whether they succeeded in maximizing their subjective expected utility. Respondents’ payments

depend on the distribution of first order beliefs (i.e. the empirical distribution of signals) and on the

distribution of second order beliefs. Therefore to determine whether it is incentive compatible to tell the

truth, we must understand what the respondent believes are the distributions of first and second order

beliefs in the population. We obtain the former for free: Respondents’ beliefs about the distribution

of first order beliefs are their second order beliefs, and we elicited these in our survey. We did not,

however, elicit their beliefs about the distribution of second order beliefs: their third order beliefs. We

must therefore construct those. The intuition is presented in the following three steps:

1. We assume that respondents hold a common prior. If so, we can back out their third order beliefs

from (a) the distribution of second order beliefs conditional on each first order belief and (b) their

belief about how probable each first order belief is. The latter corresponds to her second order

beliefs. 10

2. We approximate the distribution of second order beliefs in the population conditional on any given

first order belief with the (sparse) empirical distributions we observe.

3. Given second and third order beliefs, we can calculate a respondent’s subjective expected utility

from reporting the truth (her stated first order belief) and from any other report.11 Specifically,

we assume that the report the respondent has given is her true belief and calculate her payment.
10If agents have common priors then conditional on the signal they receive, they would update to have the same posterior

belief. We stress here that we elicited ranks and not signals. Therefore two agents who report the same rank do not
necessarily have the same posterior as the rank is a coarse measure of a signal.

11Notice that we only utilize incentivized data since it is the only time we collected second order beliefs.
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Holding constant her own second order belief and the first and second order beliefs of her peers, we

then calculate her payments for every other possible report she could have given.

The results from this exercise are presented in Figure 4 below. Column 1 of the figure depicts the

percentage of the time that telling the truth gives the largest payment, column 2 depicts the percentage

of the time that telling the truth results in the second largest payment, etc. Taking the graph at face

value, telling the truth maximizes the respondent’s subjective expected utilitity about 35% of the time

and it minimizes her subjective expected utility only about 10% of the time. An ideal graph would place

all of its weight in the first column.

Figure 4: Incentive Compatibility of RBTS Using Collected Data

We compare this graph to one produced using the same data, but paying respondents via the Bayesian

Truth Serum. In Figure 5, we observe that unlike the graph produced with RBTS incentive payments,

the BTS graph shows that the BTS payment rules gives the largest payment to any answer with nearly

equal probability. If anything, it rewards the answer furthest from the truth the most. We therefore rely

on RBTS as it is more incentive compatible in our data than BTS.

The observed departure from this ideal, even in RBTS, may be due to the failure of our assumptions

required by RBTS holding in practice, or by our noisy approximation of third order beliefs. To evaluate

this, we perform a simulation in which we generate data that perfectly abides by all of the assumptions

required for the incentive compatability of RBTS. We describe the specific steps in the appendix, but we

provide a brief intuition here. We generate groups of agents and to each agent i we assign a true skill
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Figure 5: Incentive Compatibility of BTS Using Collected Data

level. Each agent also receives informative signals about the skill levels of each of his group members.

Agents update their priors based on these signals and these form the basis of their second order beliefs.

We can thus compute each agent’s complete second and third order beliefs.

Because the data is generated to be perfectly consistent with the assumptions of RBTS, the agent is

always best off telling the truth. Next we compress our simulation data to correspond exactly to the data

we collected from our respondents: just first and second order beliefs about group rank. In the process

we, of course, lose a tremendous amount of richness, but this allows us to have two data sets (collected

and simulated) that contain identical level of detail. We then generate the same graph as we did for our

collected data and present it in Figure 6.
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Figure 6: Incentive Compatibility of RBTS Using Collected and Simulated Data

The graph produced with the collected and with the simulated data are strikingly similar. We therefore

argue that our test yields the most favorable result for incentive compatability and that telling respondents

that they will maximize their expected payments by reporting truthfully is good advice.

6 Conclusion

In this paper we present results from an experiment measuring what people know about one another in

a village community in Maharashtra, and we quantify the extent to which their deceptive reports can

be corrected via monetary incentives. We find that respondents have substantial information about one

another, and that the quality of this information is improved when provided with monetary incentives

for truthfulness. Moreover we show that complicated but very easy to implement payment rules known

as peer prediction mechanisms perform just as well as simpler mechanisms whose implementation is

more burdensome and that one of these mechanisms, RBTS, is truthful. Given the applicability of peer

prediction to a wide variety of settings we see potential for it to be incorporated in many settings. In

ongoing work, we are exploring the usefulness of several other insights from mechanism design theory

including ensuring the privacy of respondents when they report, asking respondents to cross-report on

who is likely to have valuable information and who their peers are likely to lie about, and eliciting

information in a zero sum (where someone’s gain is necessarily someone else’s loss) versus a non-zero sum

manner. Our ongoing work also encompasses real-world stakes (whether a respondent receives a large
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grant for business purposes). It is our hope that the insights from this research agenda can inform the

methods used by practitioners to leverage community information.
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Appendix I

In this section we provide a proof of Theorem 1 that the straight forward payment rule is incentive

compatible for any expected utility maximizer.

Proof of Theorem 1: We want to show that ranking truthfully and being paid according to the

proper scoring rule described above is a dominant strategy for an expected utility maximizer with a utility

function that is monotone increasing in wealth. This is equivalent to showing that truthful ordering of the

events results in a payment distribution that first order stochastically dominantes (FOSD) the payment

distribution resulting from any other ordering. Consider an arbitrary, potentially untruthful ordering σ

where σi is the item that is ranked n− (i− 1) highest. (That is, the item a respondent ranks in spot n

is the highest item, the item a respondent ranks in spot 1 is the lowest item)

Let Aj = {x = (xσ1 , · · · , xσn) :
∑i=n
i=1 i × xσi < j}. That is, Aj is the set of sets of realizations such

that if each realization in some set x ∈ Aj occurs, then the agent is paid some amount less than j.
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For x ∈ Aj let Pσ(x) =
∏
i fσi(xσi) is the probability that precisely the realizations in x occur.

Let X be the random variable with CDF Fσ that corresponds to the total payout resulting from the

ordering σ.

Then Fσ(j) = Pσ(X < j) =
∑
x∈Aj Pσ(x) is the probability that X < j.

Consider finding k, l s.t. σk < σl but Xσk > Xσl That is σk and σl is a pair that is misordered in σ.

Clearly, if no such pair exists then σ is truthful. We will show that if such a misordered pair exists,

then flipping that pair such as to create a new ordering σ′ such that σ′
l = σk, σ′

k = σl and σ′
i = σi for

i 6= k, l results in a payment distribution for σ′ that FOSD the payment distribution for σ. After showing

this, the result follows, because starting at any aribtrary untruthful ordering, the truthful ordering will

be arrived at after a finite number of such switches, at which point no such switches remain.

To show FOSD we will show that Fσ(j) > Fσ′(j) ∀j. Consider an arbitrary element x ∈ Aj , There

are three cases.

• Case 1: xσk < xσl

In this case there is another x′ in Aj s.t.x′
σl

= xσk andx′
σk

= xσl and x′
σi = xσi∀i 6= l, k. So Pσ(x) +

Pσ(x′) = Pσ′(x) + Pσ′(x′) so the probability that one of these two events occurs is unchanged.

• Case 2: xσk = xσl

ThenPσ(x) = Pσ′(x)

• Case 3: xσk > xσl

Then Pσ(x)
Pσ′ (x) = fσk (xσk )fσl (xσl )

fσk (xσl )fσl (xσk ) > 1 because fσk (xσk )
fσk (xσl )

>
fσl (xσk )
fσl (xσl )

by Xσk > Xσl . �

Appendix II

This model simulates the truthfulness exercise of RBTS. Imagine there are 5 people to be ranked based

on their “skill.”

1. Skill is θi ∈ Θi = {1, · · · , 3}. There is a common uniform prior.

2. Given a skill θi each ranker receives an independent signal sj ∈ Sj = {1, · · · , 3}. The distribution

of signals given a state θi is Pr(sj |θi) =


.6 if θi = sj

.2 else
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3. From this we can derive the state posterior Pr(θi|sj) = Pr(θi∩sj)
Pr(sj) =


.6 if θi = sj

.2 else

4. We can also derive the signal posterior Pr(sj′ |sj) = Pr(sj′ ∩sj)
Pr(sj) =

�

θi

Pr(sj′ ∩sj |θi)Pr(θi)

1
3

=


.44 if sj′ = sj

.28 else

5. FIRST ORDER BELIEFS:

(a) Each ranker j gets a signal sj,i for each person to be ranked i ∈ {1, · · · , 5}. He can use these

to form a ranking of the 5 people to be ranked. We break ties randomly.

6. SECOND ORDER BELIEFS

(a) We compute ranker js second order belief, which will be a distribution over the 120 possible

rankings. For a random person there are 35 = 243 possible signal combinations he received.

For each potential signal combination a player receives we calculate the probability a random

other ranker j′ received any other signal combination.

(b) Given that each signal realization corresponds to a rank ordering we can use the probabilities

calculated above to determine the probability the agent assigns to another arbitrary agent

announcing each possible ranking.

7. We divide agents into groups of 5 at random, and repeat the above steps for each group so that

each group has first and second order beliefs that mimic our experimental data.

8. We run perform the same IC exercise as with the experimental data.
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